A generalization of a theorem about gapsets with depth at most 3
نویسندگان
چکیده
In this paper, we provide a generalization of theorem proved by Eliahou and Fromentin, which exhibit remarkable property the sequence $(n'_g)$, where $n'_g$ denotes number gapsets with genus $g$ depth at most $3$.
منابع مشابه
a generalization of strong causality
در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...
A GENERALIZATION OF A JACOBSON’S COMMUTATIVITY THEOREM
In this paper we study the structure and the commutativity of a ring R, in which for each x,y ? R, there exist two integers depending on x,y such that [x,y]k equals x n or y n.
متن کاملA generalization of Martindale's theorem to $(alpha, beta)-$homomorphism
Martindale proved that under some conditions every multiplicative isomorphism between two rings is additive. In this paper, we extend this theorem to a larger class of mappings and conclude that every multiplicative $(alpha, beta)-$derivation is additive.
متن کاملa generalization of a jacobson’s commutativity theorem
in this paper we study the structure and the commutativity of a ring r, in which for each x,y ? r, there exist two integers depending on x,y such that [x,y]k equals x n or y n.
متن کاملan extension and a generalization of dedekind's theorem
for any given finite abelian group, we give factorizations of the group determinant in the group algebra of any subgroups. the factorizations is an extension of dedekind's theorem. the extension leads to a generalization of dedekind's theorem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Involve
سال: 2023
ISSN: ['1944-4184', '1944-4176']
DOI: https://doi.org/10.2140/involve.2023.16.313